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A Bit about Me: Rendering Systems 

Hardware 
  Pixar Image Computer & CHAP 
  REYES Machine & FLAP 

Software 
  RenderMan 
  Real-Time Shading Language 
  Spark 



A Bit about Me: & Beyond 

Brook: Stream computing on graphics processors 

Larrabee: An x86 architecture for visual computing 



A Graphics Perspective on Co-Design 

Pat Hanrahan 

DOE Stanford PSAAP Center 
Stanford Pervasive Parallelism Laboratory 

(Supported by Sun/Oracle, AMD, NVIDIA, Intel, NEC) 

Salishan Conference on High Speed Computing 
April 25, 2011 



Application 



The Road to Point Reyes 
Lucasfilm 



R.E.Y.E.S. = Renders Everything You Ever Saw 

Simulating the everyday world 



Hardware 



REYES Machine Goals (1986) 

Pixels        3000 x 1667 (5 MP) 
Depth complexity       4 
Pixel area of a micropolygon   0.25 
Number of micropolygons     80,000,000 
FLOPs per micropolygon (minimum)  300 
Total calculation     24 GFs 
24 frames per second    .576 TFs 

Goal ~ 1 frame in 2 minutes – real-time was inconceivable 



CPUs Waste Resources 

19%/year 30:1 

1,000:1 

30,000:1 

Graph courtesy of Bill Dally 

The Capability Gap 



GPUs Use Many Forms of Parallelism 

Multi-
Core 

Multi-
Thread 

SIMD 
Vector 



“Extreme” Graphics Chip 

16 cores x 32 SIMD functional units x 2 flops/cycle x 1 GHz = 1  TFLOP 



Texture mapping must run at 100% efficiency 

Challenging 
Short inner loop (lots of branches) 
Random memory access (texture map) 
Very little temporal locality 

Application-Hardware Co-Design 

DCL   t0.xy   # Interpolate t0.xy 
DCL   v0.xyzw   # Interpolate v0.xyzw 
DCL_2D  s0    # Declaration – no code 
TEX1D  r0, t0, s0   # TEXTURE LOAD! 
MUL   r1, r0, v0   # Multiply 
MOV   oC0, r1   # Store to framebuffer 



GPU Multi-threading: Hide Latency 

frag4 frag3 frag2 frag1 
Run until stall at 

texture fetch 

Fermi: 48 threads x 16 cores x 32 SIMD ALUs = 24,576 tasks 



NVIDIA Historicals 
Year Product Tri rate CAGR Tex rate CAGR 
 1998 Riva ZX         3m     -     100m     - 
 1999 Riva TNT2         9m   3.0     350m   3.5 
 2000 GeForce2 GTS       25m   2.8     664m   1.9 
 2001 GeForce3       30m   1.2     800m   1.2 
 2002 GeForce Ti 4600       60m   2.0   1200m   1.5 
 2003 GeForce FX     167m   2.8   2000m   1.7 
 2004 GeForce 6800 Ultra     170m   1.0   6800m   2.7 
 2005 GeForce 7800 GTX     940m   3.9  10300m   2.0 
 2006 GeForce 7900 GTX    1400m   1.5  15600m   1.4 
 2007 GeForce 8800 GTX    1800m   1.3  36800m   2.3 
 2008 GeForce GTX 280  48160m   1.3 
2010 GeForce GTX 480 42000m 0.9 
2011 GeForce GTX 580 49400m   1.2 

 1.7 1.7 



SGI Historicals 

Year Product Fragment Rate Triangle Rate 
1984 Iris 2000     100K     -  0.8K     - 

1988 GTX       40M   4.5   135K   3.6 

1992 RE     380M   1.8       2M   2.0 

1996 IR   1000M   1.3     12M   1.6 

  2.2   2.2 

Performance of Z-buffered rendering 



GPUs 10x More Efficient 

# CPU cores 2 out of order 10 in-order 
Instructions per issue 4 per clock 2 per clock 
VPU lanes per core 4-wide SSE 16-wide 
L2 cache size 4 MB 4 MB 
Single-stream 4 per clock 2 per clock 
Vector throughput 8 per clock  160 per clock 

20 times greater throughput for same area and power 
½ the sequential performance 

Larrabee: A many-core x86 architecture for visual computing,  D. Carmean, E. Sprangle, T. 

Forsythe, M. Abrash, L. Seiler, A. Lake, P.  Dubey, S. Junkins, J. Sugerman, P. Hanrahan, 

SIGGRAPH 2008 (IEEE Micro 2009, Top Pick) 



Software 



Software is Inefficient 

A C program – base line 
A ruby/php program – 100x slower 
A well-written C program – 10x faster 
A crazy assembly language program – 2x-5x faster yet 



Big Challenge 

Graphics hardware specialization(s) 
Multiple implementations with different characteristics 
Software needs to be optimized for each platform 

The resulting software is  
  not portable 
  costly to develop 



Heterogeneous Platforms 

LANL IBM Roadrunner  
 (Opteron + Cell) 

Tianhe-1A 
 (Xeon + Tesla M2050 + 
 NUND 160GBps)  

ORNL Titan 



Even Bigger Challenges Ahead 

Specialization leads to hybrid or heterogeneous systems 
Heterogeneity leads to combinatorial complexity 
Complexity makes it even harder to develop software 



How Do We Handle Heterogeneity? 



Program at a Higher-Level! 



Graphics Libraries are High-Level 

glPerspective(45.0); 
for( … ) { 
    glTranslate(1.0,2.0,3.0); 
    glBegin(GL_TRIANGLES); 
        glVertex(…); 
        glVertex(…); 
        … 
    glEnd(); 
} 
glSwapBuffers(); 



OpenGL “Grammar” 

<Scene> = <BeginFrame> <Camera> <World> <EndFrame> 

<Camera> = glMatrixMode(GL_PROJECTION) <View> 
<View> = glPerspective | glOrtho 

<World> = <Objects>* 
<Object> = <Transforms>* <Geometry> 
<Transforms> = glTranslatef | glRotatef | … 
<Geometry> = glBegin <Vertices> glEnd 
<Vertices> = [glColor] [glNormal] glVertex 



Advantages 

Portability 
  Runs on wide range of GPUs 



Advantages 

Portability 
Performance 

 Carefully designed to map efficiently to hardware 
 “Driver-Compiler” uses domain knowledge 
  Vertices/Fragments are independent 
  Textures are read-only; texture filtering hw 
  Efficient framebuffer scatter-ops 
  … 



Advantages 

Portability 
  Allows hardware innovation 

Performance 



Advantages 

Portability 
Performance 
Productivity 

  Graphics libraries are easy to learn and use 



Advantages 

Portability 
Performance 
Productivity 

Having your cake and eating it too! 



Can We Apply this Idea to  

Scientific Computing? 



Liszt 
Z. DeVito, N. Joubert, M. Medina,  

M. Barrientos, E. Elsen, S. Oakley, 

J. Alonso, E. Darve, F. Ham, P. Hanrahan 

“…the most technically advanced and perhaps 
greatest pianist of all time… made playing 
complex pieces on the piano seem effortless…” 



Liszt: Solving PDEs on Meshes 

val pos = new Field[Vertex,double3]	
val A = new SparseMatrix[Vertex,Vertex]	

for( c <- cells(mesh) ) {	
    val center = avg(pos(c.vertices))	
    for( f <- faces(c) ) {	
        val face_dx = avg(pos(f.vertices)) – center	
        for ( e <- f edgesCCW c ) {	
            val v0 = e.tail	
            val v1 = e.head	
            val v0_dx = pos(v0) – center	
            val v1_dx = pos(v1) – center	
            val face_normal = v0_dx cross v1_dx	
            // calculate flux for face …	
            A(v0,v1) += …	
            A(v1,v0) -= …	



Challenges in Compiling GP Language 

Compiler needs to reason about 
  Parallelism 
  Locality 
  Synchronization 

Fundamentally, analyzing dependencies is hard 
 1. Analyzing functions: A[i] = B[pow(2,i) / mod(i,4) + f(i)] 
 2. Analyzing pointers:  A[i] = *ptrA 



Liszt Enables Dependency Analysis 

Mesh neighborhood accessed through built-in functions 
  Pattern of access defines stencil 
  Stencil shape is fixed and can be determined by 

static analysis 

Fields accessed consistently during loops 
  Field accesses are organized into “phases” 
  Within a forall, either read-only, write-only or 

reduce-only access pattern 



Domain Decomposition / Ghost Cells 
Given a program and a mesh, 
Liszt automatically creates a 
graph of mesh adjacencies 
needed to run the algorithm 

Graph is handed to ParMETIS 
to determine optimal partition 

Communication of information 
in ghost cells is automatically 
handed 

Node 0 

Owned 
Cells 



Scalable to Large Clusters 

4-socket 6-core 2.66Ghz Xeon CPU per node (24 cores), 
16GB RAM per node. 256 nodes, 8 cores per node 
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Runs Very Fast on GPUs 
Tesla C2050 vs. 1 core Nehalem E5520 (2.26 Ghz) 
Double Precision 
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cuda on tesla c2050



And Even SMPs 
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Performance 

Productivity Completeness 

The Ideal Parallel Programming Language 

From Workshop on Concurrency for Application Programmers 



Successful Languages 

Performance 

Productivity Completeness 



Successful Languages 

Performance 

Productivity Completeness 

? 



Additional Possibility 

Performance 

Productivity Completeness 

Domain 
Specific 

Frameworks  
&  

Languages 



Wrap Up 



Summary 

Graphics systems require advanced simulation 
Not having enough cycles forced us to be efficient 
Both performance and portability are important 
Leads to rapid evolution of innovative hardware 



High-Level Abstractions 

Applications are written using 
  High-level frameworks: game engines 
  Domain-specific languages: shading languages 

Advantage of high level approach 
  … makes programmers productive 
  … allows efficient automatic parallelization 



Careful Co-Design 

This strategy works because of careful co-design of 
  Applications (features) 
  Algorithms 
  Software 
  Hardware 



Thank you 


